Defining the scope of an energy transition is subjective and dependent on the scale of analysis. But in the broadest sense, it is likely that ‘an energy transition’ will not be the direct and immediate result of the COVID-19 pandemic. Rather, its developments represent aggregated forces that will, over a prolonged period of time, affect the opportunities that can shape a global energy transition that has actually already been underway i.e. the transition from fossil fuels to renewables – which many have referred to as the next transition in humanity’s energy history.
Further, what is interesting is that the policy responses to COVID-19 e.g. testing, social distancing and working from home (see Roser et al., 2020) are all examples of non-energy policies that are having an ‘energy’ impact. The virus itself is an external influence on our household energy cultures but it is going through a series of translations through policies (which are themselves also external influences) that make the virus a ‘change’ force on/in the residential energy system.
All these policies created the ‘lockdown’ effect which essentially meant that the movement of energy users was modified and changed the ‘where’, ‘why’ and ‘when’ of energy activity in homes. For example, where persons previously went to work from 9am to 5pm for instance and used their desktop or laptops in the office during those times, they are now being used at home during times when they usually would not have been. It also means that the amount and costs of using this specific energy for ‘work’ is no longer consumed in the workplace or paid for by employers but rather in and by households.
Therefore, it is perhaps easy to assume from the above that persons simply being in the home longer equates to increased energy consumption and costs. This is likely the generic case however, five interesting examples of more dynamic implications that digress from the quantitative energy consumption-cost narratives based on the roles and structure of ‘culture’ during residential energy transitions are:
1: There are aggregated external influences operating together e.g. in temperate countries experiencing longer daylight hours and higher temperatures due to the spring-summer transition, there may be less lighting and heating use even though persons are in the home longer (a pre-COVID-19 feature) or just as well in the tropics, increased cooling needs due to the high temperatures and because persons are at home longer (a during COVID-19 development).
2: Some cultural elements will likely be unaffected e.g. electricity is the dominant energy carrier in modern energy systems and there are no immediate substitutes just yet. So as a result, the cultural structure of ‘electricity’ is so strong and complex that it will remain in place (a pre, during and post-COVID-19 feature).
3: There will likely be a reinforcement of the salience of selected cultural elements e.g. laptops were quite important before COVID-19 and now likely made even more so with the advent of a larger energy culture of teleworking (a during and post-COVID-19 development).
4: There will likely be minimal to no change in salience for selected cultural elements e.g. refrigerators provide their chilling services independently of persons being at home (a pre-COVID-19 feature).
5: A strong coupling point between households and the COVID-19 policies is ‘time’. Our energy cultures are sensitive to daily, weekly, and annual timescales e.g. weekday working hours versus the weekend or annual university semester dates which affect where energy users are. But because nowadays many of us are in our homes during times that we are usually not, there are opportunities that some are able to capitalise on. One such example is the energy transition involving solar power.